TCP-IP-PART-1

Introduction: -

- TCP/IP is the first set of protocols used in Internet.
- Allows computers to communicate/share resources across a network.
- Work on TCP/IP started in 1970's.
 - 1. Funded by US Military.
 - 2. ARPA
 - 3. Network protocols of APRANET were upgraded.

TCP/IP family members:

- The modern Internet sits on top of the TCP/IP technology.
 - 1. Used as a standard.
 - 2. To bridge the gap between non-compatible platforms.
 - 3. All computers connected to the Internet understand TCP/IP.
- In 1978, ISO proposed a 7-layer reference model for network services and protocols.
 - 1. Known as OSI model.
 - 2. TCP/IP does not strictly follow this 7-layer model.

3. TCP/IP follows a simplified 4-layer model.

Why Layering?

- To provide well defined interface between adjacent layers.
 - 1. A change in one layer does not affect the other layers.
 - 2. Interface must remain the same.
- Allows a structured development of network software.

The 7 Layer OSI Model:

HOST TO HOST

The Simplified 4-layer Model: -

NIC (Network Interface Card) is put inside PC for internet connectivity . NIC has both the feature of DataLink and Physical layer.)

Data Flow in 4-layer Model:

TCP/IP Protocol Suite:

- Refers to a family of protocol.
- The protocols are built on top of connectionless technology.
 - 1. Data sent from one node to another as a sequence of datagrams.
 - 2. Each datagram sent independently.
 - 3. The datagram corresponding to the same message may follow different routes.
- Variable delay, arrival out of order at destination.

TCP/IP Family Members:

• RARP - Reserve Address Resolution Protocol

Typical Scenario:

to the destination.

What does IP do?:

- IP-transports datagram (packets) from the source node
 - 1. Responsible for routing the packets.
 - 2. Breaks a packet into smaller packets, if required.
 - 3. Unreliable service.
 - ✤ A packet may be lost in transit.
 - Packet may arrive out of order.
 - Duplicate packet may be generated.

What does TCP do?:

- TCP provides a connection oriented reliable service for sending messages.
 - 1. Split a message into packets.
 - 2. Reassemble packets at destination.

- 3. Resend packets that were lost in transmit.
- Interface with IP: -
 - 1. Each packet forwarded to IP for delivery.
 - 2. Error control is done by TCP.

What does UDP do?

- UDP provides a connectionless unreliable service for sending datagram's (packets).
 - 1. Message small enough to fit in a packet (e.g. DNS query).
 - 2. Simpler and faster than TCP.
 - 3. Never splits data into multiple packets.
 - 4. Does not care about error control.
- Interface with IP:
 - 1. Each UDP packet sent to IP for delivery.