
Address in TCP/IP:

Encapsulation:

- Basic Concept:
 - 1. As data flows down the protocol hierarchy, header (and trailer) gets appended to it.
 - 2. As data moves up the hierarchy, header (and trailer) gets stripped off.
- An example to illustrate:
 - 1. Trivial file transfer protocol (TFTP).
 - 2. TFTP client transfer 200 bytes of data.
 - 3. 4 bytes of TFTP header gets added.
- TFTP is the simpler version of FTP & uses UDP data.

IP Datagram:

The IP Layer:

• IP layer provides a connectionless, unreliable delivery system for packets.

- Each packet is independent of one another.
- IP layer need not maintain any history.
- Each IP packet must contain the source and destination addresses.
- IP layer is a datagram service so IP layer does not guarantee delivery of packets.
- IP layer encapsulation:
 - Receives a Data chunk from the higher layer (TCP or UDP).
 - Appends a header of minimum 20 bytes.
 - Containing relevant information for handling routing & flow control.

DATA

20 BYTES IP HEADER	DATA				
DATA GRAM					

1	4 8	3 1	16		32	
VER	HLEN	SERVICETYPE	TOTAL LENTH			Н
	IDENTIF	ICATION	FLAGS	FRAGMENTED OFFSET		E A
TIME	TO LIVE	PROTOCOL	HEADER CHECKSUM			D
SOURCE IP ADDRESS						E R
DESTINATION IP ADDRESS						
OPTIONS						
DATA						

Format of IP Datagram:

- VER(4 bits)
 - Version of the IP protocol in use (typically 4).
- HLEN (4 bits)
 - Length of the header expressed as the number of 32 bit words.
 - Minimum size is 5 and maximum 15.
- Total Length (16 bits): -
 - Length in bytes of the datagram including header.
 - Maximum datagram size is 216 = 65536 bytes.
- Service Type (8 bits)
 - Allowed packet to be assigned a priority.
 - Router can use this field to route packets.
 - Not universally used.
- Time to live (8 bits):
 - Prevents a packet from travelling in a loop
 - Sender sets a value that is decremented at each hop. If it reaches zero, packet is discarded.
- Protocol (8 bits):
 - Identifies the higher layer protocol being used.
- Source IP Address (32 bits)
 - Internet address of the sender.
- Destination IP address (32 bits)
 - Internet address of the destination.
- Identification, Flags, Fragment Offset :
 - Used for handling fragmentation.
- Options (Variable Width)

- Can be given provided router supports.
- Source routing, for example: -

Source can take decision for routing rather than intermediate nodes.

- Header Checksum (16 bits)
 - Covers only the IP header
 - How computed?
 - 1. Header treated as a sequence of 16 bit integers
 - 2. The integers are all added using ones complement arithmetic.
 - 3. Ones complement of the final sum is taken as the checksum.
 - A mismatch in checksum causes the datagram to be discarded.

Questions:

- 1. How many bits are there in the IP address?
- 2. How many bits are there in the Ethernet address?
- 3. What does the Ethernet address signify?
- 4. What does the IP address signify?
- 5. What does the port number signify?
- 6. What does the various layers in the simplified TCP/IP protocol stack correspond to with respect to the OSI 7-layer model?
- 7. Why is the transport layer called end-to-end or host-to-host layer?
- 8. IP is unreliable and TCP uses IP. How does TCP provide reliable service to the application layer?
- 9. List two common applications that use UDP?
- 10. Why is the IP protocol considered unreliable?
- 11. What does TCP do if the message to be sent larger than what a single datagram can handle?
- 12. If a 1000 byte data message is sent using TFTP, what will be the size in bytes of the corresponding Ethernet packet?
- 13. What are the minimum & maximum header sizes of an IP packet?

- 14. What is the purpose of the "Time to live" field in the IP header?
- 15. If the IP header is 192 bytes long, what will be the value of the "HLEN" field?
- 16. What is the maximum size of data that can be accommodated in an IP datagram?